

Impacts of bio-fuel expansion on world food systems and the environment

Sylvia Prieler and Günther Fischer Land Use Change and Agriculture Program IIASA, Laxenburg, Austria.

> ELOBIO Final Workshop 25 March 2010, Brussels

Outline

- Assessment framework
- Elobio approach & Scenario assumptions
- Results Food system
- Results Environment

Elobio approach to -"Low disturbing biofuel policies"

Stakeholder and Elobio team identified Criteria for evaluation:

- FOOD SECURITY Commodity price effects, rural income, risk of hunger, trade effects
 - ENVIRONMENT
 Land use effects, GHG savings

Key variables:

- Importance of by-products
- Growth in agricultural productivity
- Land use restrictions

Scenario formulation

Baseline scenario REF describes until 2050

Population development Economic growth Agricultural policies (further trade liberalization) Technology (agricultural productivity growth)

Climate change (Hadley, SRES A2, with CO2 effects) Land use restrictions (safeguard protected areas)

Biofuels: historic biofuel consumption until 2008, constant at 2008 level thereafter

Biofuel scenario formulation

Biofuel expansion scenarios:

Scenario WEO – based on IEA, 2008

Scenario TAR – applies announced biofuel targets

Sensitivity variants:

Biofuel production by-products Growth in agricultural productivity Land use restrictions

Transport Fuels in 2020 and 2030

Million Tons Oil Equivalent

	WEO		TA	TAR	
Developed Countries	<u>2020</u>	<u>2030</u>	<u>2020</u>	<u>2030</u>	
Transport Fuels	1505	1486	1505	1486	
Transport Biofuels	63	80	117	178	
Biofuels in Transport Fuel	4.2%	5.4%	8%	12%	
Share of 2 nd Generation	4%	19%	33%	51%	
	W	ΈO	TA	R	
Developing Countries	<u>2020</u>	<u>2030</u>	<u>2020</u>	<u>2030</u>	
Transport fuels	1174	1529	1174	1529	
Transport Biofuels	31	46	72	116	
Biofuels in Transport Fuels	2.7%	3.0%	6%	8%	

United States, European Union, Japan, Canada, Australia ... Brazil, China, India, Indonesia, Thailand, South Africa ...

Sensitivity runs

1. The importance of biofuel by-products Assume DDGS is not used as animal feed

Scenario *WEO-vD* and *TAR-vD*

2. Growth in agricultural productivity Assume higher productivity growth compared to REF Scenario *WEO-vP* and *TAR-vP*

Country Group 1: high productivity growth (Sub-Saharan Africa) + 7.5 % by 2025 and + 20% by 2050 Country Group 2: medium productivity growth (India, Pakistan, Argentina,....) + 4 % by 2025 and + 10 % by 2050 Group 3: no changes (developed countries)

3. Land use restrictions - Assume no deforestation

Food and agriculture outlook

Growth of:	2000-2050	1			
Population	50%	1 (001			
Cereal production	60%	1 (2000 =			
Ruminant meat	65%	Inde			
Other meat	80%				
Value added crop & livestock	75%				
Harvested area	21%				
Arable land	11% (+ 168 mio.ha) -				

RESULTS Reference

HUNGER: peaks in 2010 (951 million) by 2050 (530 million)

(2000=100), 2000-2050

LAND USE: Arable land expansion + urbanization (87 mio.ha)

 \rightarrow Deforestation (99 mio.ha)

RESULTS Reference

Composition of cereal consumption in 2030

Impacts of biofuel expansion on FOOD SYSTEM

Impacts of first-generation biofuels on agricultural prices

Price effects – protein feed

Development of price index for protein feed

Commodity effects

→ More cereal production due to biofuel demand

Additional cereal production, relative to REF

Where do additional cereals needed for ethanol production come from?

On average about two-thirds of the cereals used for ethanol production are obtained from additional crop production.

The remaining one-third comes from consumption changes. The reduction in direct cereal food consumption accounts for ten percent of the amount of cereals used for biofuel production, reduced feed use accounts for about a quarter.

Note: values shown are approximate; simulated values vary with scenario.

Impacts of biofuel expansion on agricultural value added

Gain in value added from crop & livestock sector, in relation to REF (relative in percentage change)

Socio-economic effects - Hunger

RESULTS

Impacts of biofuel expansion on the ENVIRONMENT

Land use changes – Agricultural expansion

Note: If DDGS were not used as animal feed an additional 5 to 8 million hectares arable land would be required globally

Spatial distribution and intensity (percent) of cultivated land, year 2000

Note: calibration of GLC2000 class weights starts from estimated reference weights and is based on an iterative scheme to match national / sub-national statistics of year 2000 (FAO AT2015/2030 adjusted cultivated land).

Land use changes – Deforestation

Additional deforestation, relative to REF

Net greenhouse gas savings achieved in biofuels scenarios

GHG savings due to biofuel use

For first-generation according to GHG saving coefficients based on EC (2008). For second-generation biofuels a GHG saving of 85 percent was used

- Carbon losses related to land use changes IPCC Tier 1 approach; accumulated over time

→ Net GHG balance

Net greenhouse gas savings of biofuel scenarios

Scenario WEO, TAR, WEO-vP, TAR-vP

- Strong increases in global demand for agricultural products
- Expected increasing integration of agriculture, forestry and energy sectors through land competition for biomass
- Use of biofuel by-products contribute substantially to dampening price increases and reducing agricultural expansion
- High sensitivity of assumed growth in agricultural productivity

Policy conclusions ...

- 'Low disturbing' biofuel development requires agricultural productivity increases to exceed food demand growth.
- Focusing on LDC yield gaps could bring about rural income growth, improve food security and provide plenty feedstocks without carbon-intensive land conversion.
- Such a scenario clearly outperforms a baseline without biofuels; but creates more competition for MDC farmers.
- For GHG benefits to materialize, yield gap reduction, carefully monitored speed of biofuel expansion and regulation to avoid deforestation is important.

Policy directions ...

- Renew efforts to enhance agricultural productivity.
- Maintain high potential land in good conditions to facilitate sustainable production increases.
- Establish and promote sustainability criteria and "best practice guides" for land use.
- Protect the poor against impacts of rising and more volatile agricultural prices.
- Promote GHG-efficient and integrated technologies.

http://www.iiasa.ac.at/Research/LUC

BIOFUELS and FOOD SECURITY

