

elobi **Biofuel policies for dynamic markets**

Bole-Rentel & M. Londo, Energy Research Centre of the Netherlands

The role of risk-mitigating policies in promoting 2nd gen biofuels

INTRODUCTION

Despite important technological advances, second generation biofuels are largely still at a demonstration stage. One of the main barriers to overcome towards a more significant affects their technological learning curve and further cost reductions. Different support policies can mitigate some of the risks that are preventing advanced biofuels access to cheaper finance sources and support their market expansion.

STUDY GOALS

1. Understand the risks related to first and second generation biofuel projects.

2. Evaluate their impact on the cost of capital.

3. Assess what policy options can overcome the initial investment hurdle for advanced biofuels.

MAIN CONCLUSIONS

*Perceived technology risks cause the cost of capital for advanced biofuels to be much higher than for conventional ones. This is hindering their market deployment. *Initial investment subsidy in combination with double counting are the most cost-efficient policy options to overcome the initial investment hurdle for 2nd gen biofuels. BUT !!!

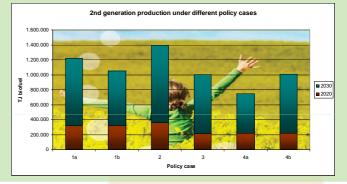
Double counting reduces the size of the biofuel market - To fulfil its purpose best, it must be discontinued in the short-middle term. ◆By 2020 we can achieve ~20% 2nd gen in the biofuel mix at reasonable policy cost (>1 billion €).

METHODOLOGY & RESULTS

Surve	N .					FINANCIAL PARAMETERS	1st gen	2nd gen	Due to its high technology risk, 2nd
of experts in	-	Risk Type	1st	2nd		Short term		\bigcirc	gen biofuel projects cannot obtain debt finance and need to be financed
of biofuel fin	ancing		generation	generation		Level of debt financing	50-80%	/ 0% \	almost exclusively by venture capital,
ļ	ļ	Technology risk	Low- medium	High		Interest rate	6.5-9%	n.a.	(safe for grants or investment subsi- dies) which implies a weighted avera-
Risk profiles	Quantified	Market risk	High	Medium	 -7	DSCR	1.2-2.0	n.a.	ge cost of capital (WACC) of 20 to
for 1 st & 2 nd generation	financial parameters:	Regulatory/Policy risk	High	Medium		Level of equity financing	20-50%	100%	30%, or 3-5 times the cost of capital
biofuels	-Debt/equity share	Geopolitical risk	Medium	Low		Required return on equity	15-20%	20-30%	of 1st gen projects.
	-Return on equity -Interest rate	Stakeholder acceptance	High	Low		WACC	6.6-13.2%	20-30%	-
						Long term	Same fo		
						Long term	Same to	, Don	1

Cashflow model

- Input: financial parameters from survey; market prices for biofuels feedstocks and by-products: investment costs; values of policy support


Output: WACC for 1st & 2nd gen production facilities

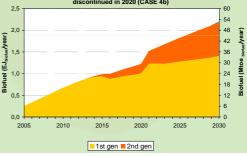
Biotrans model Input: target biofuel consumption; 10 crop/non-crop raw materials; 12 conversion steps; 7 biofuels: 30 countries and a 'rest of world' category; policy measures - Output: Optimized biofuel mix to reach target under given constraints and policy support

		Policy scenarios			
	Case	Policy option(s)			
	1a	Continuous (high) investment subsidy			
	1b	Investment subsidy gradually phased-out			
	2	Initial investment subsidy + parallel partial tax break			
	3	Initial (high) investment subsidy + subsequent soft loan			
	4a	Initial (high) investment subsidy + continuous double counting			
	4b	Initial (high) investment subsidy + double counting discontinued after 2020			

Achieving a significant contribution of 2nd gen to the transport fuel mix in the short-mid term will require considerable policy support.

A combination of investment subsidy and tax break achieves the highest production volumes (and market share) for 2nd gen but at a very high policy cost.

Evaluation of market deployment of second generation biofuels under different policy support measures


Different policy options/combinations achieve very different levels of 2nd gen production and market share. Policy costs differ very significantly.

The most effective policy options are not also the most efficient.

Case	Effectiv (2nd ger sha	market	Efficiency (total policy cost in € ₂₀₀₅ /GJ biofuel)		
	2020	2030	2030		
1a	00	000	88		
	(~22,0%)	(~40%)	(~15)		
1b	00	00	88		
	(~22,0%)	(~35%)	(~10)		
2	00	000	888		
	(~25,0%)	(~45%)	(~20)		
3	©	88	®		
	(~14,7%)	(~35%)	(~5)		
4a	00	00	©		
	(~18,0%)	(~30%)	(~2)		
4b	00	00	©		
	(~18,0%)	(~35%)	(~1)		

A combination of double counting and initial in-vestment subsidy can achieve a significant deployment of 2nd gen at the least policy cost. If discontinued after lear ning effects have sufficiently lowered the cost of technology, it fulfils its purpose best.

Biofuel mix under inital investment subsidy + double counting discontinued in 2020 (CASE 4b)

